Minggu, 02 Desember 2012

fisika semester 1 dan 2

Fisika XI IPA semester 1 dan 2

SEMESTER 1

 1. Kecepatan relatif
adalah Bila suatu partikel bergerak dalam suatu kerangka (S’) dan kerangka tersebut juga bergerak terhadap kerangka diam (S) yang lain, maka partikel tersebut kecepatan dan percepatannya tergantung pada kerangka mana dilihat.
Pada saat t =0 partikel di titik A menurut kerangka S dan dititik A’ menurut kerangka S’, dimana kedua titik tersebut berimpit. Bila kerangka S’ bergerak dengan kecepatan konstan u sejajar sumbu x maka pada saat t = t titik A bergeser sejauh ut. Dan apabila titik A’ bergerak dalam kerangka S’ sejauh r’ maka posisi partikel dilihat oleh kerangka S adalah r, dimana
r = r’ + ut
maka
dr/dt = dr’/dt + u
v = v’ + u
Jadi kecepatan partikel relatif terhadap kerangka S, yaitu v, merupakan jumlah vektor kecepatan v’ yaitu kecepatan partikel terhadap kerangka S’ dan u yaitu kecepatan kerangka S’ terhadap S.
Karena u konstan maka dv/dt = dv’/dt atau a = a’, dalam kerangka yang bergerak relatif terhadap kerangka lain dengan kecepatan konstan, percepatannya akan nampak sama.
contoh soal :



Contoh soal 1.8
Kompas pesawat terbang menunjukkan bahwa pesawat bergerak ke utara dar indikator kelajuan menunjukkan bahwa pesawat sedang bergerak dengan kelajuan 240 km/jam. Jika ada angin berhembus dengan kelajuan 100 km/jam dari barat ke timur, berapakah kecepatan pesawat terbang relatif terhadap Bumi?
PENYELESAIAN:
Kecepatan pesawat relative terhadap arah angin
vpa = 240 km/jam ke utara
kecepatan angin relative terhadap bumi
vab = 100 km/jam ke timur
kecepatan pesawat relative terhadap bumi
vpb = vpa + vab
besar kecepatan
vpb =  =
= 260 °
Arah kecepatan
α= arc tan  = arc tan
= 22,6°
(Arah kecepatan pesawat relatif terhadap Bumi adalah 22,6° search jarum jam dari utara.)

Sumber : http://isjustyogaa.blogspot.com/2011/11/contoh-soal-fisika-dan-jawaban.html#ixzz2CkknAhKh



SEMESTER 2

 TEORI KINETIK GAS
Teori kinetik zat membicarakan sifat zat dipandang dari sudut momentum. Peninjauan teori ini bukan pada kelakuan sebuah partikel, tetapi diutamakan pada sifat zat secara keseluruhan sebagai hasil rata-rata kelakuan partikel-partikel zat tersebut.
Teori ini didasarkan atas 3 pengandaian:
1. Gas terdiri daripada molekul-molekul yang bergerak secara acak dan tanpa henti.
2. Ukuran molekul-molekul dianggap terlalu kecil sehingga boleh diabaikan, maksudnya garis pusatnya lebih kecil daripada jarak purata yang dilaluinya antara perlanggaran.
3. Molekul-molekul gas tidak berinteraksi antara satu sama lain. Perlanggaran sesama sendiri dan dengan dinding bekas adalah kenyal iaitu jumlah tenaga kinetik molekulnya sama sebelum dan sesudah perlanggaran.
SIFAT GAS UMUM
  1. Gas mudah berubah bentuk dan volumenya.
  2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil.
SIFAT GAS IDEAL
  1. Gas terdiri atas partikel-partikel dalam jumlah yang besar sekali, yang senantiasa bergerak dengan arah sembarang dan tersebar merata dalam ruang yang kecil.
  2. Jarak antara partikel gas jauh lebih besar daripada ukuran partikel, sehingga ukuran partikel gas dapat diabaikan.
  3. Tumbukan antara partikel-partikel gas dan antara partikel dengan dinding tempatnya adalah elastis sempurna.
  4. Hukum-hukum Newton tentang gerak berlaku.
PERSAMAAN GAS IDEAL DAN TEKANAN (P) GAS IDEAL

P V = n R T = N K T
n = N/No
T = suhu (ºK)
R = K . No = 8,31 )/mol. ºK
N = jumlah pertikel
P = (2N / 3V) . Ek ® T = 2Ek/3K
V = volume (m3)
n = jumlah molekul gas
K = konstanta Boltzman = 1,38 x 10-23 J/ºK
No = bilangan Avogadro = 6,023 x 1023/mol
ENERGI TOTAL (U) DAN KECEPATAN (v) GAS IDEAL
Ek = 3KT/2
U = N Ek = 3NKT/2
v = Ö(3 K T/m) = Ö(3P/r)
dengan:
Ek = energi kinetik rata-rata tiap partikel gas ideal
U = energi dalam gas ideal = energi total gas ideal
v = kecepatan rata-rata partikel gas ideal
m = massa satu mol gas
p = massa jenis gas ideal
Jadi dari persamaan gas ideal dapat diambil kesimpulan:
  1. Makin tinggi temperatur gas ideal makin besar pula kecepatan partikelnya.
  2. Tekanan merupakan ukuran energi kinetik persatuan volume yang dimiliki gas.
  3. Temperatur merupakan ukuran rata-rata dari energi kinetik tiap partikel gas.
  4. Persamaan gas ideal (P V = nRT) berdimensi energi/usaha .
  5. Energi dalam gas ideal merupakan jumlah energi kinetik seluruh partikelnya.
Sumber: http://fisikavlem-ipa3.blogspot.com/2010/01/teori-kinetik-gas.html

Tidak ada komentar:

Posting Komentar